

RESULTADOS DO ESTUDOS PRELIMINARES DA CAPTURA E UTILIZAÇÃO DE BIOGÁS DO ATERRO SANITÁRIO DE NUEVO LAREDO E DE SANTO ANDRÉ

Frederico Vasconcelos SCAI Automação

Belo Horizonte, MG, Brasil 15 de abril de 2010

ATERRO SANITÁRIO NUEVO LAREDO

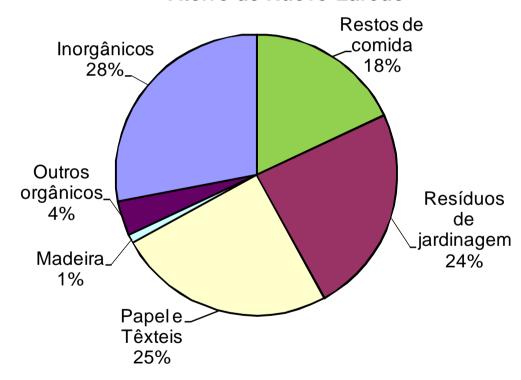
Introdução

- Fontes de Informação
- Informações sobre o local

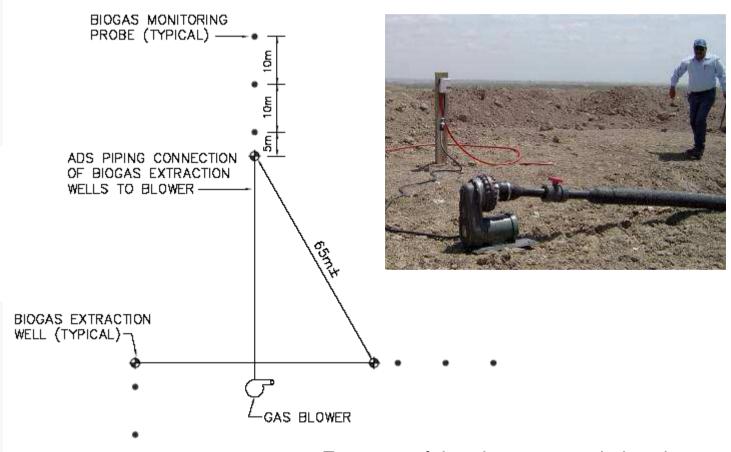
Aterro Sanitário de Nuevo Laredo

- Proprietário: Município de Nuevo Laredo
- Operador: Servicios de Tecnologia Ambiental S.A de C.V. (SETASA)
- Capacidade total estimada do aterro: 2,6 milhões de toneladas

Informações Sobre o Aterro


- Inicio das operações: 1994
- Área para disposição: 17 ha
- Profundidade máxima do aterro: 42 metros
- Disposição anual: 280.000 toneladas (2008)
- Encerramento previsto:2010 (2,6 millones tonnes)
- Compactação e cobrimento
- Tratamento do chorume
- Sistema passivo de coleta de biogás
 - 34 respiradores

Composição dos Resíduos Sólidos


Aterro de Nuevo Laredo

Cerca de 47% dos resíduos são orgânicos

Teste de Bombeamento do Biogás

Esquema típico de um teste de bombeamento

7

Teste de Bombeamento do Biogás

- Atividades realizadas entre os dias 14 e 28 de agosto de 2006
- Monitoramento de CH₄, CO₂, O₂, gas de equilíbrio (~ N₂) e pressão estática em 3 poços, 9 sondas e 1 soprador
- O fluxo do biogás foi monitorado no soprador

Resultados do Teste de Bombeamento

Poços de extração

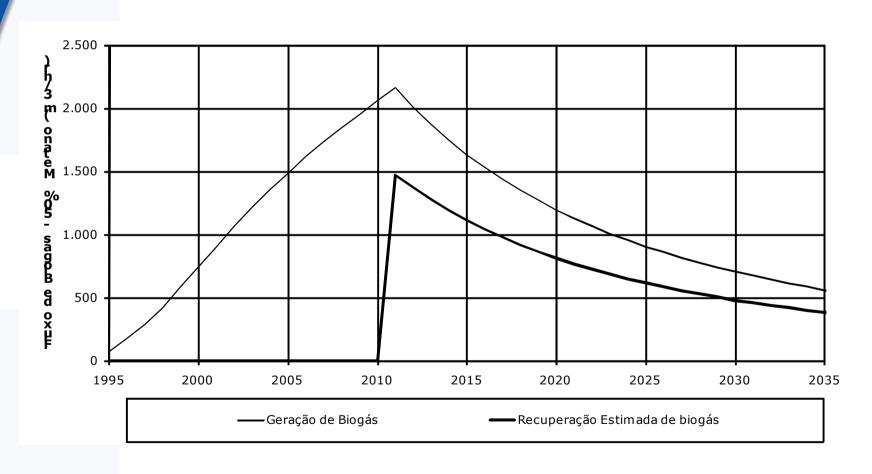
Os resultados indicam que, em geral, a qualidade do biogás é excelente

Sondas

Utilizadas para estimar o raio de influência do poço ~ 45m

Soprador

Fluxo de biogás: 263 m³/hr


- Concentração de metano: 57,1%-

Equivalente a um fluxo de 300 m³/hr com 50% de metano

- Recuperação máxima do biogás: 1.438 m³/hr em 2006
- Estimativas finais do modelo foram ajustadas para levar em conta os resultados do teste de bombeamento

Projeção da Recuperação do Biogás

Projeto Conceitual

- 36 poços verticais de extração
 - Concepção do campo de poços parecido com os poços utilizados no teste de bombeamento
 - Profundidade dos poços depende da profundidade da camada de resíduo
 - Distância entre poços: ~1 poço a cada 0,48 hectare
- ~3.500 m de tubulação de PEAD para conectar os poços de extração a estação de combustão do biogás

Resumo dos Resultados

Eletricidade

- Se a operação da planta iniciar em 2012, estima-se que haverá biogás disponível para sustentar uma usina de 1,7 MW (dois geradores de 0,85 MW)
- Dada a diminuição da produção de biogás a partir de 2011, antecipa-se que o biogás recuperado a partir de 2016 não será suficiente para sustentar ambos os geradores

 Em função disso, a avaliação assumiu uma usina com capacidade de 1,7 MW de 2012-2015 e capacidade de 0,85 MW de 2016 – 2026.

 Uso Direto – Limitada pela escassez de industrias e possíveis usuários de gás natural na redondeza

Avaliação Econômica – Resultados

Avaliação de um projeto de geração de eletricidade

Preço do Crédito de Carbono (\$/tonelada)	Investimento de Capital (%)	Valor Presente Líquido (x1.000 \$)	Taxa Interna de Retorno (%)
6	100	\$1.688	19,8%
10	100	\$2.685	29,6%
6	25	\$1.576	46,6%
10	25	\$2.593	89,6%

Benefícios Ambientais de um Projeto de Eletricidade

- Redução de emissões diretas advindas da combustão do biogás
 - Redução total de emissões diretas (projeto de 15 anos) = 964.000 toneladas CO₂eq
- Redução de emissões indiretas associadas ao deslocamento do uso de combustíveis fósseis
- Esses <u>benefícios anuais</u> são equivalentes a:
 - Eliminação das emissões de 12.170 automóveis
 - Plantio de 16.450 acres de árvores
 - Prevenção do uso de 270 vagões de carvão
 - Prevenção do uso de 129.550 barris de petróleo

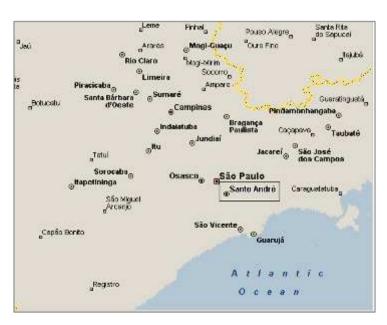
Conclusão

- Local atrativo para um projeto de generação de eletricidade
 - Com ou sem financiamento de 75%
 - Receitas provenientes da venda de créditos de carbono (US\$6 ou US\$10 a tonelada de CO₂eq)

Os fatores de contingência do custo de capital e do custo de operação e manutenção utilizados nesse estudo foram baixos

Desenvolvimento do Projeto

- O Município de Nuevo Laredo lançou uma Licitação Publica Internacional em Novembro de 2007
- Inclui projeto do sistema de captação, condução, tratamento e disposição do biogás e sistema de geração de energia elétrica
- Foram pré-selecionadas 3 ou 4 empresas e somente estas podem apresentar propostas de projeto


SANTO ANDRÉ ATERRO SANITÁRIO

Introdução

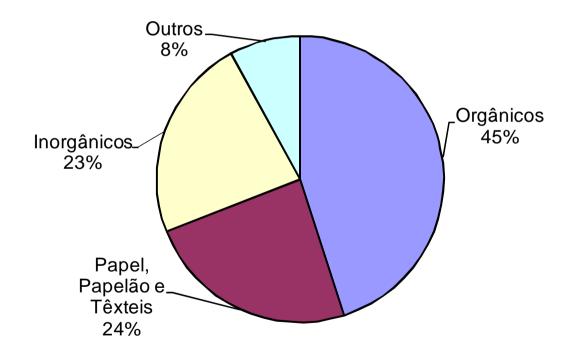
- Fontes de Informação
- Informações sobre o local

Aterro Sanitário de Santo André

- Proprietário: Município de Santo André
- Operador: Pajoan Ltda.
- Capacidade total estimada do aterro: 5,9 milhões de toneladas

Informações Sobre o Aterro

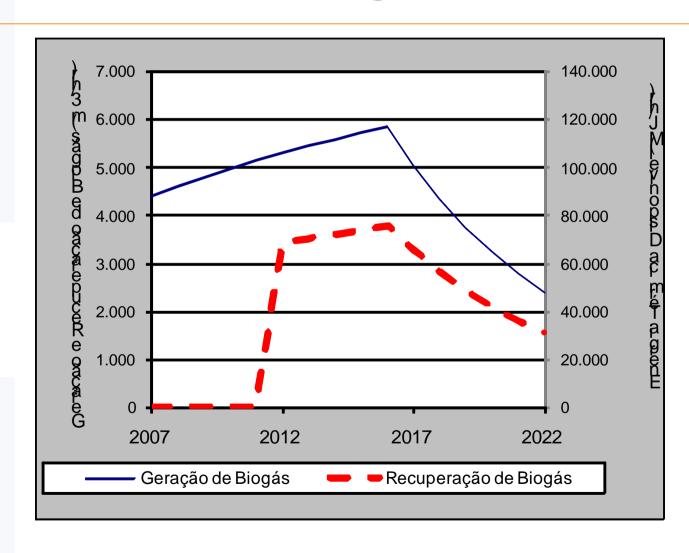
- Inicio das operações: 1990
- Área para disposição: 18 ha
- Profundidade máxima do aterro: 90 metros
- Disposição anual: 280.000 toneladas (2008)
- Encerramento previsto: 2015 (5.9 milhões de toneladas)
- Tratamento do chorume
- Compactação e cobrimento
- Sistema passivo de coleta de biogás
 - 100 respiradores
 - Espaçamento de 30 metros entre respiradores



Composição dos Resíduos Sólidos

Aterro de Santo André

 Programa de reciclagem no município - maior contéudo de resíduo orgânico



Projeção da Recuperação do Biogás

- Recuperação baseada em uma eficiência de 65% - valor conservador
- Eficiência pode ser superior dependendo do:
 - Tipo de cobertura utilizada
 - Concepção do campo de poços
 - Operação do sistema de captura

Projeção da Recuperação do Biogás

Opções de Projetos de Biogás

- Generação de Eletricidade
 - Determinante crítico: Preço da energia elétrica
- Uso direto
 - Determinante critico: preço do gas natural
 - Distribuição de gás no estado de São Paulo é exclusivo da COMGAS
 - Aterro próximo a indústrias, porém foram identificadas instalações industriais promissoras para o uso do biogás
- Combustão e comercialização dos créditos de carbono

Captura de Metano e Potencial Energético

	Ano	Geração de Metano (toneladas)	Captura de Metano (toneladas)	Vazão de Biogás (Nm³/h)	Energia Térmica (GJ/h)	Energia Elétrica Potencial (MW)
	2007	13.840	8.996	2,865	57,0	4,4
	2008	14.497	9.423	3.001	59,7	4,6
	2009	15.101	9.816	3.126	62,2	4,8
	2010	15.660	10.179	3.242	64,5	5,0
	2011	16.182	10.518	3.350	66,6	5,1
	2012	16.671	10.836	3.451	68,6	5,3
	2013	17.133	11.137	3.547	70,5	5,4
	2014	17.573	11.422	3.638	72,4	5,6
	2015	17.994	11.696	3.725	74,1	5,7
>	2016	18.399	11.959	3.809	75,8	5,8
	2017	15.836	10.293	3.279	65,2	5,0
	2018	13.630	8.860	2.822	56,1	4,3
	2019	11.732	7.626	2,429	48,3	3,7
	2020	10.098	6.563	2.091	41,6	3,2
	2021	8.691	5.649	1.799	35,8	2,8
	2022	7.480	4.862	1.549	30,8	2,4

Projeto Conceitual

- Campo de poços
 - Modificação dos respiradores
- Estação de queima
 - Capacidade para fluxo máximo de 3.809 Nm³/h (2016)
- Usina de energia elétrica
 - Motores a biogás, geradores e equipamentos auxiliares
 - Capacidade de 5 MW economicamente ideal

Redução de Emissões

Ano	Destruição de Metano		Substituição de Combustível Fóssil		Redução
	100%	90%	Potencial Total	5,0 MW	Cumulativa
2007	151.130	136.017	9.676	9.676	
2008	158.303	142.473	10.135	10.135	
2009	164.901	148.411	10.558	10.558	173.809
2010	171.009	153.908	10.949	10.949	354.057
2011	176.702	159.032	11.313	11.038	539.642
2012	182.046	163.841	11.655	11.038	730.037
2013	187.094	168.385	11.978	11.038	924.975
2014	191.895	172,706	12,286	11.038	1.124.234
2015	196.490	176.841	12.580	11.038	1.327.629
2016	200.916	180.824	12.863	11.038	1.535.006
2017	172.930	155.637	11.072	11.038	1.717.196
2018	148.842	133.958	9.529	9.529	1.874.079
2019	128.109	115.298	8.202	8.202	2.009.109
2020	110.265	99.238	7.060	7.060	2.125.331
2021	94.906	85.415	6.076	6.076	2,225,364
2022	81.686	73.518	5.230	5.230	2.311.463

Avaliação Econômica – Resultados

	Duração do Projeto		
Reduções de Emissões (TCO2e)	2009-2015	2009-2022	
6.0 MW de Ger. Energia	1.338.755	2.327.063	
5.0 MW de Ger. Energia	1.327.629	2.311.463	
4.0 MW de Ger. Energia	1.236.060	2.172.190	
Somente Flare (1)	1.143.123	1.987.011	
Taxa Interna de Retorno			
6.0 MW de Ger. Energia	18,7%	24,7%	
5.0 MW de Ger. Energia	30,6%	35,1%	
4.0 MW de Ger. Energia	37,4%	41,3%	
Somente Flare (1)	65,3%	67,1%	
VPL @ 5%/ano (\$000) (2)			
6.0 MW de Ger. Energia	7.073	17.361	
5.0 MW de Ger. Energia	9.952	20.018	
4.0 MW de Ger. Energia	7.898	15.756	
Somente Flare (1)	5.748	9.618	
VPL @ 10%/ano (\$000) (2)			
6.0 MW de Ger. Energia	3.897	10.332	
5.0 MW de Ger. Energia	6.918	13.199	
4.0 MW de Ger. Energia	5.755	10.612	
Somente Flare (1)	4.502	6.933	

Conclusão

- Aterro é bem operado e se configura em local atrativo para um projeto potencial de captura de biogás
 - Desenvolvimento de um projeto por um empreendedor privado depente da implementação bem-sucedida de um processo de licitação pela Prefeitura
- Projeção boa da recuperação do biogás
 - Resíduo com alto conteúdo de orgânicos
 - Clima adequado
- Projeto de geração de energia elétrica depende do preço da eletricidade na região

Para mais Informação

- Websites:
 - www.methanetomarkets.org
 - www.epa.gov/lmop
- Para mais informação sobre os programas do M2M e LMOP, contactar Chris Godlove - godlove.chris@epa.gov